

ACCREDITATION CERTIFICATE

004-LB-CAL

Emirates International Accreditation Centre

has accredited

GENERAL CONST. LAB CALIBRATION LLC

Industrial Area # 3, Sharjah-United Arab Emirates

In accordance with the requirements of

ISO/IEC 17025:2005


General requirements for the competence of testing and calibration laboratories

to undertake the calibration in the attached accreditation scope

This Accreditation is invalid without the attached accreditation scope and shall remain in force within the validity period printed below, subject to continuing compliance with the requirements of the accreditation criteria.

Validity: 25/12/2019 to 25/05/2021

Initial Accreditation Date: 25/05/2009

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
All types of Caliper Digital/	GTS-WP-22 Based on	0 – 600 mm	30 μm	Laboratory/
Dial/ Vernier -0.02 mm	BS EN ISO 13385-1 &			Customer
	BS 887 (only for limits of			Premises (Std.
	error reference)	> 600mm to 1500mm	50 μm	room/
	For determining error of			Metrology)
	indicated size Comparison with gauge blocks	1500mm < to 2000mm	60 μm	
Vernier Caliper	GTS-WP-22	0 – 600 mm (already	36 µm	Laboratory/
(0.05 mm)	Based on BS EN ISO 13385-	available)		Customer
	1 & BS 887 (only for limits of			Premises (Std.
	error reference)	600 mm < to 1500 mm	50 μm	room/
	For determining error of			Metrology)
	indicated size			
	Comparison with gauge	1500 mm < to 2000 mm	60 μm	
	blocks			

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
External Micrometer (Digital) LC: 0.001 mm)	GTS-WP-23 Based on BS EN ISO 3611 & BS 870 (only for limits of error reference) DMS 2014 For determining error of indicated size Comparison with gauge	0-25mm (already available) >25 mm up to 100 mm >100 mm up to 500 mm >500 mm up to 925 mm	2.5 μm 4 μm 10 μm 20 μm	Laboratory/ Customer Premises (Std. room/ Metrology)
External Micrometer (Analogue LC:0.01 mm)	blocks GTS-WP-23 Based on BS EN ISO 3611 & BS 870 (only for limits of error reference) For determining error of indicated size Comparison with gauge blocks	0 up to 25mm (already available) >25mm up to 100mm >100mm up to 500mm >500mm up to 925mm	3 μm 4 μm 10 μm 20 μm	Laboratory/ Customer Premises (Std. room/ Metrology)
Micrometer Setting Standard	GTS-WP-23 Based on BS EN ISO 3611 For determining length using 1D comparator (ULMS)	Up to 100 mm	2 μm 9 μm	Laboratory

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Micrometer Setting Standard	GTS-WP-23 Based on BS EN ISO 3611	Up to 100mm	3 μm	Laboratory
	(using HMS)	>100mm up to 600mm	10 μm	
	For determining length using HMS	>600 mm up to 900 mm	15 μm	
Depth Micrometer (Digital/ analogue)	GTS-WP-28 Based on BS EN ISO 6468	Up to 25mm	3 μm	Laboratory
(Digitaly alialogue)	For determining error of	>25 mm up to 100mm	4 μm	
	indicated depth Comparison with gauge	>100 mm up to 300 mm	6 µm	
	blocks	Up to 100mm /0.01mm	7 μm	
		>100mm up to 300mm /0.01 mm	12 µm	
	GTS-WP-24 Based on BS EN ISO 959	Up to 300mm	5 μm	Laboratory
Analogue)	For determining error of indicated size Comparison with gauge	>300mm up to 500mm	8 µm	
	blocks and ULMS	>500 mm up to 1000 mm	15 μm	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Tubular Micrometer /Inside Micrometer (Digital/ Analogue)	GTS-WP-24 Based on BS EN ISO 959 For determining error of indicated size Comparison with gauge blocks and ULMS	0.001 mm up to 300mm/0.01mm 300mm <up 2000mm="" <br="" to="">0.01mm</up>	8 μm 30 μm	Laboratory
Inside Micrometer (Caliper Type)	GTS-WP-24 Based on BS EN ISO 959 For determining error of indicated size Comparison with gauge blocks, ring gauges and ULMS	0 mm up to 50mm	3 µm	
Dial/Digital Indicators	GTS-WP-26 Based on BS EN ISO 463& BS 907 (only for limits of error reference) For determining error of indicated displacement Comparison with ULMS	0.01mm up to 100mm /0.01mm 0.001 mm up to 50 mm /0.001 mm	8 μm 3 μm	
	Comparison with dial gauge calibrator	0.01mm up to 25mm /0.01mm	7 μm	Laboratory/ Customer Premises (Std.

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Bore Gauge(Ordinary/ Digital)	GTS-WP-27 Based on JIS B 7515 For determining error of indicated diameter Comparison with calibration tester and ULMS	Up to 400 mm/0.001mm Up to 400 mm/0.01mm	9 μm 10 μm	Laboratory
LVDT (Ordinary/ Digital)	GTS-WP-168 Based on ASTM F2537 For determining error of indicated displacement Mechanical comparison to calibrated gauge blocks/ULMS	UP to 200mm	3+(0.05*L) μm; L: mm	Laboratory/ Customer Premises (Std. room)
Dial Test Indicator/ Lever Type Dial Gauges	GTS-WP-172 Based on BS EN ISO 463, BS 2795 & IS 11498 For determining error of indicated displacement Comparison with ULMS	Up to 1mm/0.001mm Up to 1mm/0.01mm	2 μm 6 μm	Laboratory
Dial Test Indicator/ Lever Type Dial Gauges	Comparison with dial gauge calibrator	Up to 1mm/0.01mm	7 μm	Laboratory/ Customer Premises

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Dial/Digital Thickness Gauges	GTS-WP-36 Based on JIS B7503; JIS B7524	Up to 25mm /0.001mm	3 μm	Laboratory
	For determining error of indicated size Comparison with ULMS / calibrated gauge blocks	Up to 25mm /0.01mm	6.5 μm	
Depth Gauge (Dial/Digital/ Vernier)	GTS-WP-29 Based on BS EN ISO 13385- 2	Up to 450 mm/0.02 mm	35 μm	
	For determining error of indicated depth Comparison with HMS / gauge blocks	Up to 450 mm/0.01 mm	25 μm	
Height Gauge (Digital/Dial/ Analogue)	GTS-WP-25 Based on BS EN ISO 13225/ BS-1643 For determining error of	Up to 600mm	30 µm	Laboratory/ Customer Premises (Std. room/
	indicated vertical size Comparison with gauge blocks and HMS	Up to 1000mm	40 μm	Metrology)

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Feeler Gauge	GTS-WP-56	Up to 1mm	3.5 μm	Laboratory/
	Based on BS 957			Customer
	For determining thickness			Premises (Std.
	Comparison method using			room/
	calibrated digital micrometer			Metrology)
Radius Gauge	GTS-WP-81	Up to 25mm	9 μm	Laboratory
	Based on IS 5273-1969 For			
	determining radius using			
	Profile Projector			
Thread / Screw Pitch Gauge	GTS-WP-126	0.4 - 7 mm	6 μm	
(Metric/inch)	Based on IS 4211			
	For determining pitch using	4 - 42 TPI	240 μin	
	Profile Projector			
Thread Plug gauges	GTS-WP-70	1mm Up to 100mm	4 μm	
(Metric / Unified/BSP (or) G	Based on EURAMET cg-10			
threads)	For determining Simple			
	Pitch Diameter	>100 Up to 200mm	5 μm	
	using ULMS			
	Metric Threads			
	For determining Simple	1/16" up to 4"	160 µin	
	Pitch Diameter			
	using ULMS			
	Inch - Unified / BSP			

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Thread Plug gauges	For determining Simple	Above 4" and including 8"	200 μin	Laboratory
(Metric / Unified/BSP (or) G	Pitch Diameter			
threads)	using ULMS			
	Inch - Unified / BSP			
	GTS-WP-137	3mm up to 14mm	3 μm	
	Based on EURAMET cg-10			
	For determining Simple			
	Pitch Diameter	>14mm up to and including	4 μm	
	using ULMS	100 mm	·	
	Metric Threads			
	For determining Simple	1/8" up to 1/2"	120 µin	
	Pitch Diameter			
	using ULMS	1/2"< and including 4"	160 µin	
	Inch – Unified /BSP			
Thread Plug/Ring gauge –	GTS-WP-173	1/8" up to 1/2"	140 µin	
Taper	Based on JIS B 0262 &			
(NPT/BSPT)	EURAMET cg-10			
	For determining Simple	1/2"< and including 4"	180 µin	
	Pitch Diameter		·	
	using ULMS			

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Setting / Plain Plug gauge	GTS-WP-80	1 mm up to 50 mm	1 μm	Laboratory
(Metric/Inch)	Based on ASME B89.1.5 &			
	EURAMET cg-6	>50 mm up to 100 mm	1.5 μm	
	For determining diameter Comparison with ULMS scale			
	/ gauge block using ULMS	>100 mm up to 400 mm	5 μm	
Setting / Plain Ring gauge	GTS-WP-106	1 to 14mm	1.3 µm	
(Metric/Inch)	Based on BS EN ISO 4064 & EURAMET cg-6	14< to 100mm	1.5 µm	
	For determining diamater Comparison with reference	100< to 200mm	3 µm	
	ring gauge using ULMS	200< to 300mm	4.5 μm	
		300< to 400mm	5 μm	
Height Measuring System	GTS-WP-169	Up to 1000mm	1+(0.008*L)µm	
(HMS)/ Digital Height	Based on BS EN ISO		L: mm	
Gauge	13225/BS 1643			
L.C: 0.001mm and greater	For determining error of			
	indicated vertical size			
	Comparison with gauge			
	blocks			

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
1-D measuring Machine	GTS-WP-139	Up to 100mm (absolute)	0.2+(0.006*L) μm	Laboratory
(Universal Length Measuring System (ULMS))	For determining error of indicated size/displacement	Up to 600mm (differential)	L: mm	
	Mechanical comparison to			
	gauge blocks			
Profile Projector	GTS-WP-158	Up to 200mm	5 + (0.015) μm	
	Based on JIS 7540	(0-360)°	L: mm	
	For determining error of		0.14° (8 arc minutes)	
	indicated			
	size/displacement/angular			
	displacement			
	Comparison to calibrated			
	Glass scale and Cross wire			
	chart			
Thread Measuring Cylinder	GTS-WP-170	Up to 6.35mm	1 μm	
	Based on			
	BS 3777 & BS 5590			
	For determining diamater			
	Comparison with ULMS scale			
	/ reference gauge block			
	using ULMS			

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Cylindrical Standards / Measuring Pins	GTS-WP-170 Based on IS-11103 For determining diamater Comparison with ULMS scale / reference gauge block using ULMS	Up to 12 mm	1 μm	Laboratory
Steel Scale	GTS-WP-171 Based on OIML R035-1-e& BS 4372 Measurement of line spacing using profile projector	Up to 300 mm	0.050 mm	
Caliper Checker	GTS-WP-164 Based on Manufacturer Spec. For determining face spacing Comparison to gauge blocks using precise HMS	Up to 600mm	1 + (0.01*L) μm L: mm	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Depth Micro Checker	GTS-WP-165 and 166 Based on Manufacturer Spec. For determining face spacing Comparison to gauge blocks using precise HMS	Up to 300mm	4.5 μm	Laboratory
Inside Micro checker	GTS-WP-166 Based on Manufacturer Spec. For determining face spacing Comparison to gauge blocks using precise HMS	Up to 300mm >300mm Up to 600mm	4.5 μm 7 μm	Laboratory
Dial Calibration Tester	GTS-WP-167 Based on Manufactured Spec. For determining error of indicated displacement Mechanical comparison to gauge blocks using precise HMS or ULMS	Up to 25mm	2 μm	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Dimensional Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Test Sieves	GTS-WP-43	50μm up to 4.3mm	8 μm	Laboratory
	Based on ISO 3310-1			
	For determining aperture			
	size			
	Using Profile Projector			
	GTS-WP-43	5mm up to 125mm	32 μm	
	Based on ISO 3310-1			
	For determining aperture			
	size			
	using digital caliper			

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
AC Voltage	Direct Method using Fluke	000.001 mV t	to 010.000 Mv	Laboratory/
	9100 U = Measured voltage value	10 Hz to 3 kHz	0.46 x 10 ³ <i>U</i> + 0.44 mV	Customer Premises
		>3 kHz to 10 kHz	0.46 x 10 ³ U + 0.59 mV	
		>10 kHz to 30 kHz	0.69 x 10 ³ U + 1.1 mV	
		>30 kHz to 50 kHz	1.0 x 10 ³ <i>U</i> + 2.2 mV	
		>50 kHz to 100 kHz	2.3 x 10 ³ <i>U</i> + 5.9 mV	
		010.001 mV t	to 032.000 mV	
		10 Hz to 3 kHz	0.46 x 10 ³ U + 0.11 mV	
		>3 kHz to - 10 kHz	0.4 x 10 ³ U + 0.15 mV	
		>10 kHz to 30 kHz	0.70 x 10 ³ U + 0.28 mV	
		>30 kHz to 50 kHz	1.0 x 10 ³ U + 0.56 mV	
		>50 kHz to 100 kHz	2.3 x 10 ³ <i>U</i> + 1.5 mV	
		032.001 mV t	to 320.000 mV	
		10 Hz to 3 kHz	0.47 x 10 ³ <i>U</i> + 22 μV	
		>3 kHz to 10 kHz	0.47 x 10 ³ <i>U</i> + 29 μV	
		>10 kHz to 30 kHz	0.70 x 10 ³ <i>U</i> + 56 μV	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
AC Voltage	to 320.000 mV	Laboratory/		
	9100 U = Measured voltage value	>30 kHz to 50 kHz	1.1 x 10 ³ <i>U</i> + 0.11 mV	Customer Premises
		>50 kHz to 100 kHz	2.3 x 10 ³ U + 0.30 mV	
		0.32001 V t	to 3.20000 V	
		10 Hz to 3 kHz	0.48 x 10 ³ U + 0.22 mV	
		>3 kHz to 10 kHz	0.47 x 10 ³ U + 0.29 mV	
		>10 kHz to 30 kHz	0.70 x 10 ³ U + 0.55 mV	
		>30 kHz to 50 kHz	1.1 x 10 ³ U + 1.1 mV	
		>50 kHz to 100 kHz	2.3 x 10 ³ U + 3.0 mV	
		3.2001 V to	o 32.0000 V	
		10 Hz to 3 kHz	0.48 x 10 ³ U + 2.2 mV	
		>3 kHz to 10 kHz	0.71 x 10 ³ <i>U</i> +2.9 mV	
		>10 kHz to 30 kHz	0.93 x 10 ³ U + 5.5 mV	
		>30 kHz to 50 kHz	1.7 x 10 ³ <i>U</i> + 11 mV	
		>50 kHz to 100 kHz	4.1 x 10 ³ <i>U</i> + 37 mV	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
AC Voltage	Direct Method using Fluke	032.001 V t	to 105.000 V	Laboratory/
	9100 U = Measured voltage value	10 Hz to 3 kHz	0.47 x 10 ³ U + 7.3 mV	Customer Premises
		>3 kHz to 10 kHz	0.70 x 10 ³ <i>U</i> + 9.7 mV	
		>10 kHz to 30 kHz	0.93 x 10 ³ <i>U</i> + 18 mV	
		>30 kHz to 50 kHz	1.7 x 10 ³ <i>U</i> + 36 mV	
		>50 kHz to 100 kHz	4.1 x 10 ³ U + 0.12 V	
		105.001 V t	to 320.000 V	
		40 Hz to 100 Hz	0.6 x 10 ³ U + 22 mV	
		>100 Hz to 1 kHz	0.6 x 10 ³ U + 22 mV	
		>1 kHz to 3 kHz	0.94 x 10 ³ <i>U</i> + 22 mV	
		>3 kHz to 10 kHz	0.94 x 10 ³ <i>U</i> + 37 mV	
		>20 kHz to 30 kHz	1.7 x 10 ³ <i>U</i> +74 mV	
		0320.01 V t	to 0800.00 V	
		40 Hz to 100 Hz	0.59 x 10 ³ <i>U</i> + 73 mV	
		>100 Hz to 1 kHz	0.59 x 10 ³ <i>U</i> + 73 mV	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
AC Voltage	Direct Method using Fluke 9100	0320.01 V t	0.93 x 10 ³ <i>U</i> + 73 mV	Laboratory/ Customer
	U = Measured voltage value	>3 kHz to 10 kHz	0.93 x 10 ³ U + 0.12 V	Premises
		0800.01 V t	to 1050.00 V	
		40 Hz to 100 Hz	0.59 x 10 ³ U + 0.15 V	
		>100 Hz to 1 kHz	0.59 x 10 ³ U + 0.15 V	
		>1 kHz to 3 kHz	0.93 x 10 ³ U + 0.15 V	
		>3 kHz to 10 kHz	0.93 x 10 ³ U + 0.24 V	
	Direct Method using Fluke	1.0 mV to 32.999 mV		
	5522A <i>U = Measured voltage value</i>	10 Hz to 45 Hz	0.62 x 10 ⁻³ <i>U</i> + 4.8 μV	
		>45 Hz to 10 kHz	0.13 x 10 ⁻³ <i>U</i> +4.8 μV	
		>10 kHz to 20 kHz	0.17 x 10 ⁻³ <i>U</i> +4.8 μV	
		>20 kHz to 50 kHz	0.78 x 10 ⁻³ <i>U</i> +4.8 μV	
		>50 kHz to 100 kHz	2.7 x 10 ⁻³ <i>U</i> +9.4 μV	
		>100 kHz to 500 kHz	6.3 x 10 ⁻³ <i>U</i> +39 μV	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
AC Voltage	Direct Method using Fluke	33 mV to 3	329.999 Mv	Laboratory/ Customer
	5522A U = Measured voltage value	10 Hz to 45 Hz	0.24 x 10 ⁻³ <i>U</i> +6.1 μV	Premises
		>45 Hz to 10 kHz	0.13 x 10 ⁻³ <i>U</i> +6.0 μV	
		>10 kHz to 20 kHz	0.14 x 10 ⁻³ <i>U</i> +6.0 μV	
		>20 kHz to 50 kHz	0.28 x 10 ⁻³ <i>U</i> +6.0 μV	
		>50 kHz to 100 kHz	0.63 x 10 ⁻³ <i>U</i> +25 μV	
		>100 kHz to 500 kHz	1.7 x 10 ⁻³ <i>U</i> +53 μV	
		0.33 V to	0.33 V to 3.29999 V	
		10 Hz to 45 Hz	0.48 x 10 ⁻³ <i>U</i> +80 μV	
		>45 Hz to 10 kHz	0.13 x 10 ⁻³ <i>U</i> +45 μV	
		>10 kHz to 20 kHz	0.16 x 10 ⁻³ <i>U</i> +45 μV	
		>20 kHz to 50 kHz	0.24 x 10 ⁻³ <i>U</i> +38 μV	
		>50 kHz to 100 kHz	0.55 x 10 ⁻³ <i>U</i> +97 μV	
		>100 kHz to 500 kHz	1.9 x 10 ⁻³ U +0.46 mV	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
AC Voltage	Direct Method using Fluke 5522A		0.48 × 10 ⁻³ <i>U</i> + 1.0 mV	Laboratory/ Customer
	U = Measured voltage value	10 Hz to 45 Hz >45 Hz to 10 kHz	0.48 x 10 * <i>U</i> + 1.0 mV 0.13 x 10 ⁻³ <i>U</i> +0.45 mV	Premises
		>10 kHz to 20 kHz	0.20 x 10 ⁻³ <i>U</i> +0.46 mV	
		>20 kHz to 50 kHz	0.28 x 10 ⁻³ U +0.46 mV	
		>50 kHz to 100 kHz	0.71 x 10 ⁻³ <i>U</i> +1.2 mV	
		33 V to 3	29.9999 V	
		45 Hz to 1 kHz	0.16 x 10 ⁻³ <i>U</i> +1.6 mV	
		>1 kHz to 10 kHz	0.17 x 10 ⁻³ <i>U</i> +4.5 mV	
		>10 kHz to 20 kHz	0.21 x 10 ⁻³ <i>U</i> +4.6 mV	
		>20 kHz to 50 kHz	0.26 x 10 ⁻³ <i>U</i> +4.4 mV	
		>50 kHz to 100 kHz	1.6 x 10 ⁻³ <i>U</i> +39 mV	
		330 V to	o 1020 V	
		45 Hz to 1 kHz	0.24 x 10 ⁻³ <i>U</i> +8.5 mV	
		>1 kHz to 5 kHz	0.21 x 10 ⁻³ <i>U</i> +8.5 mV	
		>5 kHz to 10 kHz	0.26 x 10 ⁻³ <i>U</i> +8.0 mV	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
DC Voltage	Direct Method using Fluke	0.001 mV to 320.000 mV	14 x 10 ⁶ <i>U</i> + 1,7 μV	Laboratory/
	9100 <i>U = Measured Voltage value</i>	0.32001 V to 3.20000 V	9,0 x 10 ⁶ <i>U</i> + 1,7 μV	Customer Premises
		3.2001 V to 32.0000 V	10 x 10 ⁶ <i>U</i> + 17 μV	
		32.001 V to 320.000 V	15 x 10 ⁶ <i>U</i> + 0,13 mV	
		320.01 V to 1050.00 V	15 x 10 ⁶ U + 1,3 mV	
	Direct Method using Fluke 5522A	0 V to 329.9999 mV	56 x 10 ⁻⁶ <i>U</i> +2 μV	
		0.33 V to 3.299999 V	58 x 10 ⁻⁶ <i>U</i> +0.3 μV	
	U = Measured Voltage value	3.3 V to 32.99999 V	59 x 10 ⁻⁶ <i>U</i> +3.5 μV	
		33 V to 329.9999 V	60 x10 ⁻⁶ U +0.035 mV	
		330 to 1020.000 V	60 x 10 ⁻⁶ <i>U</i> +0.36 mV	
DC Current	Direct Method using Fluke	0.001 μA to 320.000 μA	0.17 x 10 ³ / + 0.013 μA	
	9100 I = Measured Current value	0.32001 mA to 3.20000 mA	0.18 x 10 ³ /+ 0.094 μA	
		3.2001 mA to 32.0000 mA	0.18 x 10 ³ / + 1.0 μA	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cal	libration of instruments		
DC Current	Direct Method using Fluke 9100	32.001 mA to 320.000 mA	0.20 x 10 ³ / + 11 μA	Laboratory/ Customer
	l = Measured Current value	0.32001 A to 3.20000 A	0.70 x 10 ³ / + 0.14 mA	Premises
		3.2001 A to 10.5000 A	0.64 x 10 ³ / + 1.1 mA	
		10-turn c	urrent coil	
		3.2001 A to 32.0000 A	2.4 x 10 ⁻³ / + 0.51 mA	
		32.001 A to 105.000 A	2.4 x 10 ⁻³ / + 3.8 mA	
		50-turn current coil		
		16.001 A to 160.000 A	2.4 x 10 ⁻³ / + 2.5 mA	
		160.01 A to 525.00 A	2.4 x 10 ⁻³ / + 19 mA	
		525.01 A to 1000.00 A	2.4 x 10 ⁻³ / + 0.104 A	
	Direct Method using Fluke	0 μA to 329.999 μA	0.12 x 10 ⁻³ / +0.011 μA	
	5522A	0.33 mA to 3.29999 mA	0.08 x 10 ⁻³ / + 0.04 μA	
	I = Measured Current value	3.3 mA to 32.99999 mA	0.08 x 10 ⁻³ / +0.21 μA	
		33 mA to 329.999 mA	0.16 x 10 ⁻³ / +4.2 μA	
		0.33 A to 1.09999 A	0.16 x 10 ⁻³ / +0.031 mA	
		1.1 A to 2.99999 A	0.30 x 10 ⁻³ / +0.031 mA	
		3 A to 10.9999 A	0.41 x 10 ⁻³ / +0.38 mA	
		11 A to 20.5 A	0.85 x 10 ⁻³ / +0.54 mA	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cal	libration of instruments		
DC Current	Direct Method using Fluke	50 tu	ırn coil	Laboratory/ Customer
		0.2 A to 0.33 A	4.0 x 10 ⁻³ / +16 mA	Premises
	I = Measured Current value	>0.33 A to 2.9999 A	4.0 x 10 ⁻³ / +0.11 A	
		3 A to 20.5 A	4.0 x 10 ⁻³ / +0.39 A	
AC Current	Direct Method using Fluke	0.001 μA to 320.000 μA		
	9100	10 Hz to 3 kHz	0.83 x 10 ⁻³ / + 0.35 μA	
	I = Measured Current value	>3 kHz to 10 kHz	1.2 x 10 ⁻³ / + 0.69 μA	
		>10 kHz to 20 kHz	2.3 x 10 ⁻³ / + 2.3 μA	
		>20 kHz to 30 kHz	2.9 x 10 ⁻³ / + 3.5 μA	
		0.32001 mA	to 3.20000 mA	
		10 Hz to 3 kHz	0.85 x 10 ⁻³ / + 0.34 μA	
		>3 kHz to 10 kHz	1.2 x 10 ⁻³ /+ 0.68 μA	
		>10 kHz to 20 kHz	2.4 x 10 ⁻³ /+ 2.3 μA	
		>20 kHz to 30 kHz	2.9 x 10 ⁻³ / + 3.5 μA	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Issue no.: 08 Date: 25-12-2019 Valid to: 25-05-2021

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location	
	Cali	ibration of instruments			
AC Current	Direct Method using Fluke 9100	10 Hz to 3 kHz >3 kHz to 10 kHz	0.85 x 10 ⁻³ / + 3.6 μA 1.2 x 10 ⁻³ / + 7.3 μA	Laboratory/ Customer	
	I = Measured Current value	>10 kHz to 20 kHz	2.4 x 10 ⁻³ /+ 15 μA	Premises	
		>20 kHz to 30 kHz	2.9 x 10 ⁻³ / + 26 μA		
		32.001 mA t	o 320.000 mA		
		10 Hz to 3 kHz	0.9 x 10 ⁻³ / + 36 μA		
		>3 kHz to 10 kHz	1.2 x 10 ⁻³ / + 54 μA		
		>10 kHz to 20 kHz	2.4 x 10 ⁻³ / + 74 μA		
		>20 kHz to 30 kHz	2.9 x 10 ⁻³ / + 0.11 mA		
		0.32001 A t	to 3.20000 A		
		10 Hz to 3 kHz	1.2 x 10 ⁻³ / + 0.55 μA		
		>3 kHz to 10 kHz	2.9 x 10 ⁻³ / + 3 mA		
		3.2001 A t	o 10.5000 A		
		10 Hz to 3 kHz	2.3 x 10 ⁻³ /+ 3.5 mA		
		>3 kHz to 10 kHz	5.8 x 10 ⁻³ / + 12 mA		

Calibration of instruments

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
AC Current	Direct Method using Fluke	10-turn c	urrent coil	Laboratory/
ı	9100	3.2001 A to	o 32.0000 A	Customer Premises
	I = Measured Current value	10 Hz to 100 Hz	3.3 x 10 ⁻³ /+ 5.2 mA	
		>100 Hz to 440 Hz	9.3 x 10 ⁻³ / + 31 mA	
		32.001 A to	D 200.000 A	
		10 Hz to 100 Hz	3.3 x 10 ⁻³ / + 91 mA	
		>100 Hz to 440 Hz	8.1 x 10 ⁻³ / + 0.28 A	
		50-turn c	50-turn current coil	
		16.001 A to	o 160.000 A	
		10 Hz to 100 Hz	3.3 x 10 ⁻³ / + 27 mA	
		160.01 A to 1000.00 A		
		10 Hz to 100 Hz	3.3 x 10 ⁻³ / + 0.45 A	
	Direct Method using Fluke	29 μA to	ll 329.99 μA	
	5522A	10 Hz to 20 Hz	1.6 x 10 ⁻³ / +0.10 μA	
	I = Measured Current value	>20 Hz to 45 Hz	1.2 x 10 ⁻³ / +0.10 μA	
		>45 Hz to 1 kHz	0.97 x 10 ⁻³ / +0.10 μA	
		>1 kHz to 5 kHz	2.3 x 10 ⁻³ / +0.12 μA	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
AC Current	Direct Method using Fluke	29 μA to	329.99 μΑ	Laboratory/
	5522A	>5 kHz to 10 kHz	6.2 x 10 ⁻³ / +0.16 μA	Customer Premises
	I = Measured Current value	>10 kHz to 30 kHz	12 x 10 ⁻³ / +0.31 μA	
		0.33 mA to	3.29999 mA	
		10 Hz to 20 Hz	1.6 x 10 ⁻³ / +0.12 μA	
		>20 Hz to 45 Hz	0.97 x 10 ⁻³ / +0.12 μA	
		>45 Hz to 1 kHz	0.78 x 10 ⁻³ / +0.12 μA	
		>1 kHz to 5 kHz	1.55 x 10 ⁻³ / +0.16 μA	
		>5 kHz to 10 kHz	3.9 x 10 ⁻³ / +0.23 μA	
		>10 kHz to 30 kHz	7.8 x 10 ⁻³ / +0.46 μA	
		3.3 mA to	11 32.9999 mA	
		10 Hz to 20 Hz	1.4 x 10 ⁻³ / +1.6 μA	
		>20 Hz to 45 Hz	0.71x 10 ⁻³ / +1.5 μA	
		>45 Hz to 1 kHz	0.35 x 10 ⁻³ / +1.5 μA	
		>1 kHz to 5 kHz	0.69 x 10 ⁻³ / +1.5 μA	
		>5 kHz to 10 kHz	1.6 × 10 ⁻³ / +1.5 μA	
		>10 kHz to 30 kHz	3.1 x 10 ⁻³ / +1.5 μA	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
AC Current	Direct Method using Fluke	33 mA to 329.999 mA		Laboratory/
	5522A	10 Hz to 20 Hz	1.4 x 10 ⁻³ / +16 μA	Customer Premises
	I = Measured Current value	>20 Hz to 45 Hz	0.70 x 10 ⁻³ / +16 μA	
		>45 Hz to 1 kHz	0.32 x 10 ⁻³ / +15 μA	
		>1 kHz to 5 kHz	0.78 x 10 ⁻³ / +39 μA	
		>5 kHz to 10 kHz	1.6 x 10 ⁻³ / +78 μA	
		>10 kHz to 30 kHz	3.1x 10 ⁻³ / +0.16 mA	
		0.33 A to 1.09999 A		
		10 Hz to 45 Hz	1.4 x 10 ⁻³ / +76 μA	
		>45 Hz to 1 kHz	0.41 x 10 ⁻³ / +76 μA	
		>1 kHz to 5 kHz	4.7x 10 ⁻³ / +0.77mA	
		>5 kHz to 10 kHz	19 x 10 ⁻³ / +3.9 mA	
		1.11 A to	2.99999 A	
		10 Hz to 45 Hz	1.4 x 10 ⁻³ / +77 μA	
		>45 Hz to 1 kHz	0.48 x 10 ⁻³ / +76 μA	
		>1 kHz to 5 kHz	4.7 x 10 ⁻³ / +0.77 mA	
		>5 kHz to 10 kHz	19 x 10 ⁻³ / +3.9 mA	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cal	ibration of instruments		
AC Current	Direct Method using Fluke	3 A to 1	0.9999 A	Laboratory/ Customer
	33227	45Hz to 100 Hz	0.48 x 10 ⁻³ / +1.5 mA	Premises
	I = Measured Current value	>100 Hz to 1 kHz	0.79 x 10 ⁻³ / +1.5 mA	
		>1 kHz to 5 kHz	23 x 10 ⁻³ / +1.6 mA	
		11 Ato 20.5 A		
		45 Hz to 100 Hz	0.95 x 10 ⁻³ / +3.8 mA	
		>100 Hz to 1 kHz	1.2 x 10 ⁻³ / +3.8 mA	
		>1 kHz to 5 kHz	23 x 10 ⁻³ / +3.9 mA	
Resistance	Direct Method using Fluke	0.0001 Ω to 40.0000 Ω	0.33 x 10 ⁻³ R + 12 mΩ	
	9100	40.001 Ω to 400.000 Ω	0.23 x 10 ⁻³ R + 23 mΩ	
	R = Measured Resistance value	0.40001 kΩ to 4.00000 kΩ	0.17 x 10 ⁻³ R + 93 mΩ	
	value	4.0001 kΩ to 40.0000 kΩ	$0.17 \times 10^{-3} R + 0.93 \Omega$	
		40.001 kΩ to 400.000 kΩ	0.21 x 10 ⁻³ R + 9.3 Ω	
		0.40001 MΩ to 4.00000 MΩ	$0.23 \times 10^{-3} R + 0.12 \text{ k}\Omega$	
		4.0001 MΩ to 40.0000 MΩ	0.59 x 10 ⁻³ <i>R</i> + 2.3 kΩ	
		40.001 MΩ to 400.000 MΩ	0.71 x 10 ⁻³ R + 46 kΩ	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cal	bration of instruments		
Resistance	Direct Method using Fluke	0 Ω to 10.9999 Ω	31 x10 ⁻⁶ R +7.8 mΩ	Laboratory/
	5522A	11 Ω to 32.9999 Ω	23 x10 ⁻⁶ <i>R</i> +12mΩ	Customer Premises
	R = Measured Resistance	33 Ω to 109.9999 Ω	22 x10 ⁻⁶ R +12 mΩ	
	value	110 Ω to 329.9999 Ω	22 x10 ⁻⁶ R +16 mΩ	
		330 Ω to 1.099999 kΩ	22 x10 ⁻⁶ R +15 mΩ	
		1.1 kΩ to 3.299999 kΩ	22 ×10 ⁻⁶ R +0.15 Ω	
		3.3 kΩ to 10.99999 kΩ	22 x10 ⁻⁶ R +0.077 Ω	
		11 kΩ to 32.99999 kΩ	22 ×10 ⁻⁶ <i>R</i> +0.77 Ω	
		33 kΩ to 109.9999 kΩ	22 ×10 ⁻⁶ R +0.77 Ω	
		110 kΩ to 329.99999 kΩ	25 x10 ⁻⁶ R +7.7 Ω	
		330 kΩ to 1.099999 MΩ	26 x10 ⁻⁶ R +7.7 Ω	
		1.1 MΩ to 3.299999 MΩ	48 x10 ⁻⁶ <i>R</i> +0.12 kΩ	
		3.3 MΩ to 10.99999 MΩ	0.10 x 10 ⁻³ R +0.19 kΩ	
		11 MΩ to 32.99999 MΩ	0.21 x 10 ⁻³ R +1.9 kΩ	
		33 MΩ to 109.9999 MΩ	0.44 x 10 ⁻³ R +2.1 kΩ	1
		110 MΩ to 329.9999 MΩ	2.3 x 10 ⁻³ R +0.077 MΩ	
		330 MΩ to 1100 MΩ	12 x 10 ⁻³ R +0.39 MΩ	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
Capacitance	Direct Method using Fluke	0.5000 nF to 4.0000 nF	3.5 x 10 ⁻³ C+ 18 pF	Laboratory/
	9100	4.0001 nF to 40.000 nF	3.5 x 10 ⁻³ C+ 35 pF	Customer Premises
		40.001 nF to 400.00 nF	3.5 x 10 ⁻³ C+ 0.18 nF	
		400.01 nF to 4.0000 μF	4.7 x 10 ⁻³ C + 1.9 nF	
		4.0001 μF to 40.000 μF	5.8 x 10 ⁻³ C + 19 nF	
		40.001 μF to 400.00 μF	5.8 x 10 ⁻³ C + 0.19 μF	
		400.01 μF to 4.0000 mF	5.8 x 10 ⁻³ C + 1.8 μF	
		4.0001 mF to 40.000 mF	12 x 10 ⁻³ <i>C</i> + 69 μF	
	Direct Method using Fluke	220 pF to 399.9 pF	8.6 x 10 ⁻³ C +7.2 pF	
	5522A	0.4 nF to 1.0999 nF	4.5 x 10 ⁻³ C +7.6 pF	-
	C = Measured Capacitance	1.1 nF to 3.2999 nF	4.1 x 10 ⁻³ C +7.6 pF	
	value	3.3 nF to 10.9999 nF	2.1 x 10 ⁻³ C +7.6 pF	
		11 nF to 32.9999 nF	2.0 x 10 ⁻³ C +77 pF	
		33 nF to 109.999 nF	2.1 x 10 ⁻³ C +76 pF	
		110 nF to 329.999 nF	2.1 x 10 ⁻³ C +0.23 nF	
		0.33 μF to 1.09999 μF	2.1 x 10 ⁻³ C +0.76 nF	
		1.1 μF to 3.29999 μF	2.1 x 10 ⁻³ C +2.3 nF	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cali	bration of instruments		
Capacitance	Direct Method using Fluke	3.3 μF to 10.9999 μF	2.1 x 10 ⁻³ C +7.6 nF	Laboratory/
	5522A	11 μF to 32.9999 μF	3.2 x 10 ⁻³ <i>C</i> +23 nF	Customer Premises
	C = Measured Capacitance	33 μF to 109.999 μF	3.7 x 10 ⁻³ C +75 nF	
	value	110 μF to 329.999 μF	3.7 x 10 ⁻³ <i>C</i> +0.22 μF	
		0.33 mF - 1.09999 mF	5.4 x 10 ⁻³ <i>C</i> +0.75 μF	
		1.1 mF to 3.29999 mF	5.4 x 10 ⁻³ <i>C</i> +2.2 μF	
		3.3 mF to 10.9999 mF	5.4 x 10 ⁻³ <i>C</i> +7.5 μF	
		11 mF to 32.9999 mF	8.8 x 10 ⁻³ <i>C</i> +23 μF	
		33 mF to 110 mF	13 x 10 ⁻³ <i>C</i> +77 μF	
Frequency	Direct Method using Fluke 9100	0.5 Hz to 10.0 MHz	29 x 10 ⁻⁶ <i>f</i>	
	Direct Method using Fluke	0.01 Hz to 119.99 Hz	1.9 x 10 ⁻⁶ <i>f</i> +12 μHz	
	5522A	120 Hz to 1199.9 Hz	2.0 x 10 ⁻⁶ f +32 μHz	
	f = Measured Frequency	1.200 kHz to 11.999 kHz	2.0 x 10 ⁻⁶ f +0.29 mHz	
	value	12.00 kHz to 119.99 kHz	2.0x 10 ⁻⁶ f +2.9 mHz	
		120.00 kHz to 1199.9 kHz	2.0 x 10 ⁻⁶ f +29 mHz	
		1.200 MHz to 2.000 MHz	1.9 x 10 ⁻⁶ f +0.42 Hz	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
RTD - simulation	Simulation Method using	-200 °C to -80 °C	0.04 °C	Laboratory/
	Fluke 5522A	RTD-pt385, 100Ω		Customer
		> -80 °C to 0.003 °C	0.04 ℃	Premises
		RTD-pt385, 100Ω		
		0.03 °C to 100 °C	0.06 °C	
		RTD-pt385, 100Ω		
		>100 °C to 300 °C	0.07 °C	
		RTD-pt385, 100Ω		
		>300 °C to 400 °C	0.08 °C	
		RTD-pt385, 100Ω		
		>400 °C to 630 °C	0.09 °C	
		RTD-pt385, 100Ω		
		>630 °C to 800 °C	0.18 °C	
		RTD-pt385, 100Ω		
		-200 °C to -80 °C	0.04 °C	
		RTD-pt3926, 100Ω		
		>-80 °C to 0.003 °C	0.06 °C	
		RTD-pt3926, 100Ω		
		0.03 °C to 100 °C /	0.07 °C	
		RTD-pt3926, 100Ω		
		>100 °C to 300 °C	0.08 °C	
		RTD-pt3926, 100Ω		
		>300 °C to 400 °C	0.09 °C	
		RTD-pt3926, 100Ω		
		>400 °C to 630 °C	0.18 °C	
		RTD-pt3926, 100Ω		

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
RTD - simulation	Simulation Method using	-200 °C to -190 °C	0.19 ℃	Laboratory/
	Fluke 5522A	RTD-pt3916, 100Ω		Customer
		>-190 °C to -80 °C	0.03 ℃	Premises
		RTD-pt3916, 100Ω		
		>-80 °C to 0.003 °C	0.04 °C	
		RTD-pt3916, 100Ω		
		0.03 °C to 100 °C	0.05 °C	
		RTD-pt3916, 100Ω		
		>100 °C to 260 °C	0.06 °C	
		RTD-pt3916, 100Ω		
		>260 °C to 300 °C	0.06 °C	
		RTD-pt3916, 100Ω		
		>300 °C to 400 °C	0.07 °C	
		RTD-pt3916, 100Ω		
		>400 °C to 600 °C	0.08 °C	
		RTD-pt3916, 100Ω		
		>600 °C to 630 °C	0.18 °C	
		RTD-pt3916, 100Ω		
		-200 °C to -80 °C	0.03 °C	
		RTD-pt385, 200Ω		
		>-80 °C to 0.003 °C	0.03 °C	
		RTD-pt385, 200Ω		
		0.03 °C to 100 °C	0.03 °C	
		RTD-pt385, 200Ω		
		>100 °C to 260 °C	0.04 °C	
		RTD-pt385, 200Ω		

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
RTD - simulation	Simulation Method using	>260 °C to 300 °C	0.09 ℃	Laboratory/
	Fluke 5522A	RTD-pt385, 200Ω		Customer
		>300 °C to 400 °C	0.10 °C	Premises
		RTD-pt385, 200Ω		
		>400 °C to 600 °C	0.11 °C	
		RTD-pt385, 200Ω		
		>600 °C to 630 °C	0.12 °C	
		RTD-pt385, 200Ω		
		-200 °C to -80 °C	0.03 °C	
		RTD-pt385, 500Ω		
		>-80 °C to 0.003 °C	0.04 °C	
		RTD-pt385, 500Ω		
		0.03 °C to 100 °C	0.04 °C	
		RTD-pt385, 500Ω		
		>100 °C to 260 °C	0.05 °C	
		RTD-pt385, 500Ω		
		>260 °C to 300 °C	0.06 °C	
		RTD-pt385, 500Ω		
		>300 °C to 400 °C	0.06 °C	
		RTD-pt385, 500Ω		
		>400 °C to 600 °C	0.07 °C	
		RTD-pt385, 500Ω		
		>600 °C to 630 °C	0.09 ℃	
		RTD-pt385, 500Ω		
		-200 °C to -80 °C	0.03 °C	
		RTD-pt385, 1000Ω		

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
RTD - simulation	Simulation Method using	> -80 °C to 0.003 °C	0.03 °C	Laboratory/
	Fluke 5522A	RTD-pt385, 1000Ω		Customer
		0.03 °C to 100 °C	0.03 °C	Premises
		RTD-pt385, 1000Ω		
		>100 °C to 260 °C	0.04 °C	
		RTD-pt385, 1000Ω		
		>260 °C to 300 °C	0.05 °C	
		RTD-pt385, 1000Ω		
		>300 °C to 400 °C	0.06 °C	
		RTD-pt385, 1000Ω		
		>400 °C to 600 °C	0.06 °C	
		RTD-pt385, 1000Ω		
		>600 °C to 630 °C	0.18 °C	
		RTD-pt385, 1000Ω		
		-80 °C to 0.003 °C	0.03 °C	
		RTD-pt385, 120Ω (Ni120)		
		0.03 °C to 100 °C	0.03 °C	
		RTD-pt385, 120Ω (Ni120)		
		>100 °C to 260 °C	0.04 °C	
		RTD-pt385, 120Ω (Ni120)		
		-100 °C to 260 °C	0.23 °C	
		RTD-Cu427, 10Ω		
		600 °C to 800 °C	0.34 ℃	
		>800 °C to 1000 °C	0.26 °C	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Thermocouple	Simulation Method using	600 °C to 800 °C	0.34 °C	Laboratory/
В	Fluke 5522A	>800 °C to 1000 °C	0.26 °C	Customer Premises
		>1000 °C to 1550 °C	0.23 ℃	
		>1550 °C to 1820 °C	0.26 ℃	
Thermocouple	Simulation Method using	0.01 °C to 150 °C	0.23 °C	
С	Fluke 5522A	>150 °C to 650 °C	0.20 °C	
		>650 °C to 1000 °C	0.24 °C	
		>1000 °C to 1800°C	0.39 °C	
		>1800 °C to 2316°C	0.65 °C	
Thermocouple	Simulation Method using	-250 °C to -100 °C	0.39 °C	
E	Fluke 5522A	>-100 °C to -25 °C	0.12 °C	
		>-25 °C to 350 °C	0.11 °C	
		>350 °C to 650°C	0.12 °C	
		>650 °C to 1000°C	0.16 °C	
Thermocouple	Simulation Method using	-210 °C to -100 °C	0.21 °C	
J	Fluke 5522A	>-100 °C to -35 °C	0.12 °C	
		>-30 °C to 150 °C	0.11 °C	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Thermocouple	Simulation Method using	>150 °C to 760°C	0.13 ℃	Laboratory/
J	Fluke 5522A	>760 °C to 1200°C	0.18 °C	Customer Premises
Thermocouple	Simulation Method using	-200 °C to -100 °C	0.26 °C	
K	Fluke 5522A	>-100 °C to -25 °C	0.14 °C	
		>-25 °C to 120 °C	0.12 °C	
		>120 °C to 1000 °C	0.20 °C	
		>1000 °C to 1372 °C	0.31 °C	
Thermocouple	Simulation Method using	-200 °C to -100 °C	0.29 ℃	
L	Fluke 5522A	>-100 °C to 800 °C	0.20 °C	
		>800°C to 900 °C	0.13 °C	
Thermocouple	Simulation Method using	-200 °C to -100 °C	0.31 °C	
N	Fluke 5522A	>-100 °C to -25 °C	0.17 °C	
		>-25 °C to 120 °C	0.15 °C	
		>120 °C to 410 °C	0.14 °C	
		>410 °C to 1300 °C	0.21 °C	
Thermocouple	Simulation Method using	0.01 °C to 250 °C	0.44 °C	
R	Fluke 5522A	>250 °C to 400 °C	0.27 °C	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Thermocouple	Simulation Method using	>400 °C to 1000 °C	0.26 °C	Laboratory/
R	Fluke 5522A	>1000 °C to 1767°C	0.31 °C	Customer Premises
Thermocouple	Simulation Method using	0.01 °C to 250 °C	0.36 ℃	
S	Fluke 5522A	>250 °C to 1000 °C	0.28 °C	
		>1000 °C to 1400 °C	0.29 ℃	
		>1400 °C to 1767°C	0.36 °C	
Thermocouple	Simulation Method using	-250 °C to -150 °C	0.49 °C	
Т	Fluke 5522A	> -150 °C to 0.003 °C	0.19 °C	
		0.01 °C to 120 °C	0.12 °C	
		>120 °C to 400°C	0.11 °C	
Thermocouple	Simulation Method using	-200 °C to 0.01 °C	0.43 °C	
U	Fluke 5522A	>0.01 °C to 600 °C	0.21 °C	
DC Power	Direct Method using Fluke	33 mV/0.33mA	0.28 x 10 ⁻³ P	
	5522A with PQ Option	33 mV/329.99 mA	0.20 x 10 ⁻³ P	
		1020 V/0.33mA	0.29 x 10 ⁻³ P	
		1020 V/329.99 mA	0.20 x 10 ⁻³ P	
		33 mV/0.33 A	0.40 x 10 ⁻³ P	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
DC Power	Direct Method using Fluke 5522A with PQ Option	33 mV/2.9999 A	0.48 x 10 ⁻³ P	Laboratory/ Customer
	3322A With PQ Option	1020 V/0.33 A	0.40 x 10 ⁻³ P	Premises
		1020 V/2.9999 A	0.48 x 10 ⁻³ P	
		33 mV/3 A	0.83 x 10 ⁻³ P	
		33 mV/20.5 A	1.3 x 10 ⁻³ P	
		1020 V/3 A	0.84 x 10 ⁻³ P	
		1020 V/20.5 A	1.3 x 10 ⁻³ P	
AC Power	Direct Method using Fluke	45 Hz 1	to 65 Hz	
	5522A with PQ Option	PF=1		
		33 mV/3.3mA	1.4 x 10 ⁻³ P	
		33 mV/8.999 mA	$1.0 \times 10^{-3} P$	
		33 mV/9 mA	0.92 x 10 ⁻³ P	
		33 mV/32.999 mA	0.78 x 10 ⁻³ P	
		33 mV/33 mA	1.3 x 10 ⁻³ P	
		33 mV/89.99 mA	0.99 x 10 ⁻³ P	
		33 mV/90 mA	0.91 x 10 ⁻³ P	
		33 mV/329.99 mA	$0.77 \times 10^{-3} P$	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
AC Power	Direct Method using Fluke	329.99 mV/3.3 mA	1.3 x 10 ⁻³ P	Laboratory/
	5522A with PQ Option	329.99 mV/8.999 mA	0.94 x 10 ⁻³ P	Customer Premises
		329.999 mV/9 mA	0.86 x 10 ⁻³ P	
		329.999 mV/32.999 mA 0.71 x 10 ⁻³ P	0.71 x 10 ⁻³ P	
		329.999 mV/33 mA	1.3 x 10 ⁻³ P	
		329.999 mV/89.99 mA	0.93 x 10 ⁻³ P	
		329.999 mV/90 mA	0.85 x 10 ⁻³ P	
		329.999 mV/329.99 mA	0.69 x 10 ⁻³ P	
		330 mV/3.3 mA	1.4 x 10 ⁻³ P	
		330 mV/8.999 mA	0.95 x 10 ⁻³ P	
		330 mV/9 mA	0.89 x 10 ⁻³ P	
		330 mV/32.999 mA	0.75 x 10 ⁻³ P	
		330 mV/33 mA	1.3 x 10 ⁻³ P	
		330 mV/89.99 mA	0.94 x 10 ⁻³ P	
		330 mV/90 mA	0.88 x 10 ⁻³ P	
		330 mV/329.99 mA	0.73 x 10 ⁻³ P	
		1020 V/3.3 mA	1.3 x 10 ⁻³ P	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
AC Power	Direct Method using Fluke	1020 V/8.999 mA	0.95 x 10 ⁻³ P	Laboratory/
	5522A with PQ Option	1020 V/9 mA	0.88 x 10 ⁻³ P	Customer Premises
		1020 V/32.999 mA	0.73 x 10 ⁻³ P	
		1020 V/33 mA	1.3 x 10 ⁻³ P	
		1020 V/89.99 mA	0.93 x 10 ⁻³ P	
		1020 V/90 mA	0.87 x 10 ⁻³ P	
		1020 V/329.99 mA	0.72 x 10 ⁻³ P	
		33 mV/0.33 A	1.1 x 10 ⁻³ P	
		33 mV/0.8999 A	0.96 x 10 ⁻³ P	
		33 mV/0.9 A	0.92 x 10 ⁻³ P	
		33 mV/2.1999 A	0.95 x 10 ⁻³ P	
		33 mV/2.2A	0.99 x 10 ⁻³ P	
		33 mV/4.4999 A	1.4 x 10 ⁻³ P	
		33 mV/4.5A	1.4 x 10 ⁻³ P	
		33 mV/20.5 A	1.8 x 10 ⁻³ P	
		329.999 mV/0.33 A	1.1 × 10 ⁻³ P	
		329.999 mV/0.8999 A	0.89 x 10 ⁻³ P	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
AC Power	Direct Method using Fluke	329.999 mV/0.9 A	0.85 x 10 ⁻³ P	Laboratory/
	5522A with PQ Option	329.999 mV/2.1999 A	0.89 x 10 ⁻³ P	Customer Premises
		329.999 mV/2.2 A	0.93 x 10 ⁻³ P	
		329.999 mV/4.4999 A	1.3 x 10 ⁻³ P	
		329.999 mV/4.5 A	1.3 x 10 ⁻³ P	
		329.999 mV/20.5 A	1.7 x 10 ⁻³ P	
		330 mV/0.33 A	1.1 x 10 ⁻³ P	
		330 mV/0.8999 A	0.91 x 10 ⁻³ P	
		330 mV/0.9 A	$0.88 \times 10^{-3} P$	
		330 mV/2.1999 A	0.92 x 10 ⁻³ P	
		330 mV/2.2 A	0.97 x 10 ⁻³ P	
		330 mV/4.4999 A	1.4 x 10 ⁻³ P	
		330 mV/4.5 A	1.3 x 10 ⁻³ P	
		330 mV/20.5 A	1.8 x 10 ⁻³ P	
		1020 V/0.33 A	1.1 x 10 ⁻³ P	-
		1020 V/0.8999 A	0.90 x 10 ⁻³ P	
		1020 V/0.9A	0.87 x 10 ⁻³ P	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
AC Power	Direct Method using Fluke 5522A with PQ Option	1020 V/2.1999 A	0.91 x 10 ⁻³ P	Laboratory/ Customer
	5522A With PQ Option	1020 V/2.2 A	0.96 x 10 ⁻³ P	Premises
		1020 V/4.4999 A	1.4 x 10 ⁻³ P	
		1020 V/4.5 A	1.3 x 10 ⁻³ P	
		1020 V/20.5 A	1.8 x 10 ⁻³ P	
Oscilloscope	Direct Method using Fluke 5	522A with SC1100 Option:		
	Relative Deviation Δy of the vertical Axis (measurement	2.5 mV to 6.6 V/ 50 Ω load, and	2.8 x 10 ⁻³ U	
	range):	110 mV to130 V/ 1 M Ω load at 1 kHz		
	Oscilloscope Band Width	10 Hz to 1.1 GHz	14 x10 ⁻³ f	
Resistance Meters	Direct Method using Decade	50 μΩ;	$4.3 \times 10^{-3} R$	
μΩ; $mΩ$; $Ω$; $kΩ$; $MΩ$	Resistance Boxes: $50~\mu\Omega~to~2.0~\Omega~using~Ductor$	100 μΩ;	2.5 x 10 ⁻³ R	
	Cal 5070 5.0 Ω to 3.0 M Ω using High	150 μΩ;	1.5 x 10 ⁻³ R	
	Power Resistance	200 μΩ	1.4 x 10 ⁻³ R	
	Substituter HPRS-C-6-1	0.5 mΩ	12 x 10 ⁻³ R	
		1.0 mΩ	5.9 x 10 ⁻³ R	
		1.5 mΩ	3.9 x 10 ⁻³ R	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Resistance Meters	Direct Method using Decade	2.0 mΩ	$2.9 \times 10^{-3} R$	Laboratory/
μ Ω ; m Ω ; Ω ; k Ω ; Μ Ω	Resistance Boxes: $50~\mu\Omega~to~2.0~\Omega~using~Ductor$	5.0 mΩ	$1.2 \times 10^{-3} R$	Customer Premises
	Cal 5070 5.0 Ω to 3.0 M Ω using High	10 mΩ	0.72 x 10 ⁻³ R	
	Power Resistance	15 mΩ	$0.58 \times 10^{-3} R$	
	Substituter HPRS-C-6-1	20 mΩ	0.58 x 10 ⁻³ R	
		50 mΩ	0.16 x 10 ⁻³ R	
		100 mΩ	0.13 x 10 ⁻³ R	
		150 mΩ	0.12 x 10 ⁻³ R	
		200 mΩ	0.13 x 10 ⁻³ R	
		0.5 Ω	1.8 x 10 ⁻³ R	
		1.0 Ω	0.89 x 10 ⁻³ R	
		1.5 Ω	0.60 x 10 ⁻³ R	
		2.0 Ω	0.46 x 10 ⁻³ R	
		5 Ω to 9 Ω	$1.9 \times 10^{-3} R$	
		10 Ω to 90 Ω	1.9 x 10 ⁻³ R	
		100 Ω to 900 Ω	1.9 x 10 ⁻³ R	
		1 kΩ to 9 kΩ	$1.9 \times 10^{-3} R$	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Resistance Meters	Direct Method using Decade	100 Ω to 90 kΩ	1.9 x 10 ⁻³ R	Laboratory/
μΩ; $mΩ$; $Ω$; $kΩ$; $MΩ$	Resistance Boxes: $50~\mu\Omega~to~2.0~\Omega~using~Ductor$	100 kΩ to 900 kΩ	1.9 × 10 ⁻³ R	Customer Premises
	Cal 5070 5.0 Ω to 3.0 M Ω using High	1.0 ΜΩ	17 × 10 ⁻³ R	
	Power Resistance	2.0 ΜΩ	17 x 10 ⁻³ R	
	Substituter HPRS-C-6-1	3.0 ΜΩ	12 x 10 ⁻³ R	
Insulation Resistance Tester	Direct Method using Decade Meg Ohm Box	0.1 MΩ to 9.99 MΩ	2.3 x 10 ⁻³ R	
	Meg Olilli Box	10 MΩ to 99.9 MΩ	8.5 x 10 ⁻³ R	
		100 MΩ to 1000 MΩ	12 x 10 ⁻³ R	
	Cal	ibration of calibrators	,	
DC Voltage	Direct Method using Fluke	0 to 100 mV	43 x 10 ⁻⁶ <i>U</i> + 4 μV	Laboratory/ Customer
	8846A	>100mV to 1 V	31 x 10 ⁻⁶ <i>U</i> + 8 μV	Premises
	U = Measured Voltage value	>1V to 10 V	30 x 10 ⁻⁶ <i>U</i> + 57 μV	
		>10V to 100V	46 x 10 ⁻⁶ <i>U</i> + 0.69 mV	
		>100V to 1000V	49 x 10 ⁻⁶ <i>U</i> + 12 mV	
AC Voltage	Direct Method using Fluke	0 to 1	.00 Mv	
	8846A <i>U = Measured Voltage value</i>	5 Hz	4.1 x 10 ⁻³ <i>U</i> + 46 μV	
		>10 Hz to 20 kHz	0.72 x 10 ⁻³ <i>U</i> + 46 μV	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cal	ibration of calibrators		
AC Voltage	Direct Method using Fluke	0 to 1	.00 Mv	Laboratory/
	8846A	>20 kHz to 50 kHz	1.5 x 10 ⁻³ <i>U</i> + 58 μV	Customer Premises
	U = Measured Voltage value	>50 kHz to 100 kHz	7 x 10 ⁻³ <i>U</i> + 93 μV	
		>100 m	V to 1 V	
		5 Hz to 10 Hz	4.1 x 10 ⁻³ U + 0.35 mV	
		>10 Hz to 20 kHz	$0.70 \times 10^{-3} U + 0.35 \text{ mV}$	
		>20 kHz to 50 kHz	1.4 x 10 ⁻³ U + 0.58 mV	
		>50 kHz to 100 kHz	6.9 x 10 ⁻³ U + 0.93 mV	
		>1V t	>1V to 10 V	
		5 Hz to 10 Hz	4.1 x 10 ⁻³ U + 3.5 mV	
		10 Hz to 20 kHz	0.7 x 10 ⁻³ U + 3.5 mV	
		20 kHz to 50 kHz	1.4 x 10 ⁻³ U + 5.8 mV	
		50 kHz to 100 kHz	7 x 10 ⁻³ <i>U</i> + 9.3 mV	
		>10 V t	to 100 V	
		5 Hz to 10 Hz	4.1 x 10 ⁻³ U + 35 mV	
		10 Hz to 20 kHz	0.7 x 10 ⁻³ U + 35 mV	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
	Cal	ibration of calibrators		
AC Voltage	Direct Method using Fluke 8846A	>10 V t	1.4 x 10 ⁻³ <i>U</i> + 58 mV	Laboratory/ Customer
	U = Measured Voltage value	50 kHz to 100 kHz	7 x 10 ⁻³ <i>U</i> + 93 mV	Premises
		>100 V t	to 1000 V	
		5 Hz to 10 Hz	$4.1 \times 10^{-3} U + 0.35 V$	
		>10 Hz to 20 kHz	0.72 x 10 ⁻³ U + 0.35 V	
		>20 kHz to 50 kHz	1.8 x 10 ⁻³ U + 0.55 V	
		>50 kHz to 100 kHz	$7.0 \times 10^{-3} U + 0.92 V$	
DC Current	Direct Method using Fluke 8846A	0 to 100 μA	0.59 x 10 ⁻³ / + 0.03 μA	
	8840A	>100 μA to 1 mA	0.58 x 10 ⁻³ / + 0.06 μA	
	I = Measured Current value	>1 mA to 10 mA	0.58 x 10 ⁻³ / + 2.3 μA	
		>10 mA to 100 mA	0.58 x 10 ⁻³ / + 5.8 μA	
		>100 mA to 1 A	0.59 x 10 ⁻³ / + 0.23 mA	
		> 1 A to 10 A	1.8 x 10 ⁻³ / + 0.92 mA	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location	
Calibration of calibrators					
AC Current	Direct Method using Fluke	0 to 100 μA	1.2 x 10 ⁻³ / + 0.05 μA	Laboratory/	
	8846A	10 Hz to 1 kHz		Customer	
		>100 µA to 1 mA	1.2 x 10 ⁻³ / + 0.46 μA	Premises	
	I = Measured Current value	10 Hz to 1 kHz			
		>1 mA to 10 mA	1.2 x 10 ⁻³ / + 4.6 μA		
		10 Hz to 1 kHz			
		>10 mA to 100 mA	1.2 x 10 ⁻³ / + 46 μA		
		10 Hz to 1 kHz			
		>100 mA to 1 A	1.2 x 10 ⁻³ / + 0.46 mA		
		10 Hz to 1 kHz			
		>1 A to 10 A	$1.8 \times 10^{-3} / + 6.9 \text{ mA}$		
		10 Hz to 1 kHz			
Resistance	Direct Method using Fluke 8846A	0.0001 Ω to 10.0000 Ω	$0.12 \times 10^{-3} R + 3.5 \text{ m}\Omega$		
	00407	10.001 Ω to 100.000 Ω	$0.12 \times 10^{-3} R + 4.6 \text{ m}\Omega$		
	R = Measured Resistance	0.1001 kΩ to 1.0 kΩ	$0.12 \times 10^{-3} R + 12 \text{ m}\Omega$		
	value	1.0001 k Ω to 10.0000 k Ω	$0.12 \times 10^{-3} R + 0.12 \Omega$		
		10.001 kΩ to 100.000 kΩ	$0.12 \times 10^{-3} R + 1.2 \Omega$		
		$0.10001~\text{M}\Omega$ to $1.00000~\text{M}\Omega$	0.12 x 10 ⁻³ R + 11.4 Ω		
		1.0001 MΩ to 10.0000 MΩ	$0.47 \times 10^{-3} R + 0.12 \text{ k}\Omega$		
		10.001 MΩ to 100.000 MΩ	$9.3 \times 10^{-3} R + 12 k\Omega$		

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Electrical Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
---	--------------------	-------------------------	---	----------

Force Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Force Verification /Calibration of Compression testing machines	GTS-WP-06 based on BS EN ISO 7500-1	50 kN up to 3000 kN	0.24% of reading using force transducer class 1, ISO 376	Client Premises
		150 kN up to 3000 kN	0,45 % of indicating reading using force transducer class 2, ISO 376	
Force Verification /Calibration of tensile testing machines	GTS-WP-06 based on BS EN ISO 7500-1	6,2 kN up to 300 kN	0.24 % of reading using force transducer class 1, ISO 376	Client Premises
Proving rings for soil testing apparatus	GTS-WP-08	400 N up to 50 kN	0.7 % of reading	Laboratory
Push-Pull gauge	GTS-WP-08	45 N up to 50 kN	0,3 % of reading	
Force gauge and load cell with indicator for industrial applications	GTS-WP-08	100 N up to 50 kN	1.0 % of reading	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Mass and Balance Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Conventional Mass	GTS-WP-17	1 mg	0.02 mg	Laboratory
(F1 , F2 Class) Up to 5 kg. M Class for 10 & 20 kg	Substitution Weighing with	2 mg	0.02 mg	
	air buoyancy Error ABBA	5 mg	0.02 mg	
	weighing cycle based on OIML R-111:2004, OIML-	10 mg	0.02 mg	
	D28:2004, PTB-Guide MA-	20 mg	0.02 mg	
	40	50 mg	0.02 mg	
		100 mg	0.02 mg	
		200 mg	0.02 mg	
		500 mg	0.02 mg	
		1 g	0.02 mg	
		2 g	0.02 mg	
		5 g	0.03 mg	
		10 g	0.03 mg	
		20 g	0.05 mg	
		50 g	0.09 mg	
		100 g	0.19 mg	
		200 g	0.35 mg	
		500 g	0.81 mg	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Mass and Balance Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Conventional Mass	GTS-WP-17	1 kg	1.6 mg	Laboratory
(F1 , F2 Class) Up to 5 kg. M Class for 10 & 20 kg	Substitution Weighing with air buoyancy Error ABBA	2 kg	3.4 mg	
	weighing cycle based on OIML R-111:2004, OIML-	5 kg	8.4 mg	
	D28:2004, PTB-Guide MA-	10 kg	0.16 g	
	40	20 kg	0.17 g	
Calibration of top loading	GTS-WP-01	Up to 100 g	0.0001 g	Laboratory/
direct reading weighing	Based on the requirements	Up to 210 g	0.0002 g	Customer
balance	of	Up to 0.5 kg	0.0006 g	Premises
	ASTM E 898 Calibrated weights -	Up to 1 kg	0.001 g	
	E1 ,E2,F1, F2 & M1 weights	Up to 5 kg	0.009 g	
		Up to 10 kg	0.013 g	
		Up to 30 kg	0.23 g	
		Up to 100 kg	0.45 g	
		Up to 500 kg	2.27 g	
		Up to 1000 kg	0.46 kg	
		Up to 2000 kg	0.69kg	
Calibration concrete and	Hopper Scale calibration of	Up to 5000 kg	0.05%	Customer
asphalt batching plants	concrete and asphalt			Premises
(Hopper Scale)	batching plants ASTM			
	C94/C94M & NIST			
	Handbook 44			

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Pressure Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Pneumatic Pressure Calibration of Digital & Analogue Pressure Gauges	GTS-WP-02 Based on the requirements of BS EN 837-1:1998 Using Druck DPI 610, DPI 620	up to 20 bar	0.02%	Laboratory/ Customer Premises
Pneumatic Pressure Transducers, Transmitters and Switches	GTS-WP-02 Using Druck DPI 610, DPI 104 and Fluke 8846 multimeter	Up to 100 bar	0.11%	Laboratory/ Customer Premises
Vacuum gauge calibration –Analogue & Digital	GTS-WP-03 Based on the requirements of BS EN 837-1: 1998 and ISO/TS 3567 Using Druck DPI 610, DPI 620	0 up to – 1 bar	1 mbar	Laboratory/ Customer Premises
Hydraulic Pressure Transducers, Transmitters and Switches	GTS-WP-02 Using Budenberg DWT 580HX Piston Cylinder 030L & Fluke 8846 multimeter	Up to 1200 bar	0.11%	Lab
Hydraulic pressure Digital & Analogue Pressure Gauges & pressure modules	GTS-WP-02 Using Budenberg DWT 580HX Piston Cylinder 030L	Up to 1200 bar	0.02%	Lab

Calibration of hydraulic	GTS-WP-143 based on	up to 1400 bar	0.01%	Lab
pressure balance	OIML R110 and EURAMET			
	cg-3 Version 1.0 (03/2011)			
Calibration of pneumatic	GTS-WP-143 based on	0.5 to 25 bar	0.01%	Lab
pressure balance	OIML R110 and EURAMET			
	cg-3 Version 1.0 (03/2011)			
Calibration of Mercury and	GTS-WP-184	0 mm Hg to 350 mm Hg	0.58 % rdg.	Laboratory/
dial Sphygmomanometer				Customer
				Premises

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Temperature and Humidity Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Liquid-in-glass	GTS-WP-13 Based on	-30 °C up to 150 °C	0.16 °C	Laboratory
thermometers	BS 1041-2-1			
Direct reading thermometers	GTS-WP-15 (in house method)	-40 °C up to 160 °C	0.16 °C	
	(in nouse method)	>160 °C up to 500 °C	0.4 °C	
		>500 °C up to 900 °C	1.3 °C	
		>900 °C up to 1200 °C	4 °C	
Dial Thermometers	GTS-WP-14	-30°C up to 160°C	0.16 °C	
	Based on EN 13190	>160°C up to 400°C	2.0 °C	
		>400°C up to 800°C	4.0 °C	
Base Metal Thermocouples	GTS-WP-12	-40 °C up to 250 °C	0.3 °C	
		>250 °C up to 600 °C	0.6 °C	
		>600 °C up to 900 °C	0.9 °C	
		>900 °C up to 1200 °C	4.0 °C	
Noble Metal Thermocouple	GTS-WP-12	0°C up to 600°C	0.6°C	
		>600°C up to 900°C	0.8°C	
		>900°C up to 1200°C	1.7°C	
Climatic Chamber	GTS-09 Based on DKD-R-5-7 (9 points)	30°C up to 180°C	1.1°C	Laboratory/ Client Premises

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Temperature and Humidity Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Water Bath, incubators	GTS-09 Based on DKD-R-5-7 (5 points)	5°C up to 95°C	1.1℃	Laboratory/ Client Premises
Freezer/Chiller	GTS-154 Based on DKD-R-5-7 (9 points)	-30°C up to 95°C	1.1°C	
Furnace, Oven	GTS-WP-09 Based on	30°C up to 180°C	1.1°C	
	DKD-R5-7(9 points, muffle furnace: 1 point)	>180°C up to 300°C	1.3°C	
		>300°C up to 800°C	4.0°C	
		>800°C up to 1200°C	9.0°C	
Auto Clave(Temperature)	GTS-WP-155 Based on DKD- R5-7 (5 – 9 points)	100°C up to 140°C	0.8 ℃	
Refrigerator	GTS-WP-176	- 40°C to 20°C	0.8 ℃	
Stirred Liquid bath	GTS-WP-182	-35°C to 165°C	0.6 °C	
		>165°C to 300°C	0.7 °C	
Dry Block Calibrator	GTS-WP-177	Atmospheric temp. to 250°C	0.4 °C	
		>250 to 400°C	0.6 °C	
		>400 to 650°C	0.8 °C	
		>650°C to 900°C	1.2 °C	
		900°C to 1100°C	2.5 °C	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Temperature and Humidity Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Humidity meter / Transmitter	GTS-WP-178	10% of RH to 90 % of RH	1.0% of RH	Laboratory
RTD with/ without	GTS-WP-179	-45°C to 40°C	0.22 °C	
Temperature Indicator		>40°C to 200°C	0.37 °C	
		>200°C to 600°C	0.45 ℃	
Infrared Thermometer	GTS-WP - 150 Comparison method	-30°C to 0°C	3.5 ℃	
	Companson method	>0°C to 600°C	4.0°C	
Temperature Transducer/ Transmitter/ Switch	GTS-WP-181	-30 °C to 150°C	0.8 °C	Laboratory/ Client Premises
Transmitter/ Switch		>150°C to 850°C	0.9°C	Client Premises
Data Logger (Temperature,	GTS-WP-183	-10 °C to 70°C	0.8 ℃	Laboratory
Humidity)		10% to 90 % of RH	0.9% of RH	

Torque Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Torque Hand Torque Tools	GTS-WP-31 based on: ISO 6789-1: 2017 and ISO 6789- 2: 2017	0,5 N·m to 340 N·m Torque transducers TTC 400	1,0 % of reading	Laboratory
		81 N·m to 813 N·m Torque transducer TTC 12	1,0 % of reading	
		271 N·m to 2711 N·m Torque transducer TTC 14	1,0 % of reading	
Torque Transducers	GTS-WP-31	0.45 N·m to 5.65 N·m	0.5 % of reading	
	based on BS 7882:2017	3.39 N·m to 45.19 N·m	0.4 % of reading	
		9.03 N·m to 112.98 N·m	0.3 % of reading	
		27.12 N·m to 338.96 N·m	0.3 % of reading	
		81.35 N·m to 813.49 N·m	0.3 % of reading	
		271 N·m to 2711 N·m	0.8 % of reading	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.

Volume Calibration

004-LB-CAL

General Const. Lab Calibration LLC

Industrial Area # 3, Sharjah-United Arab Emirates

Calibration Field/ Measuring Quality	Calibration Method	Range and Specification	Calibration Measurement Capability (CMC)*	Location
Pipette	GTS-WP-61A & GTS-WP-61	0.5 μl to 100 μl	0.57 μΙ	Laboratory
Fixed and Variable Volume Pipette	Gravimetric method ISO 8655-6 & ISO 4787	>100 µl to 2000 µl	1.30 μΙ	
		>2000 µl to 5000 µl	1.5 µl	
		> 5 ml to 100 ml	0.11%	
Beaker	GTS-WP-61 &61B	50 ml to 5000 ml	0.70%	
Graduated cylinder	Gravimetric method ISO 8655-6 & ISO 4787	50 ml to 5000 ml	0.70%	
Volumetric Measuring Flask		> 5 ml to 100 ml	0.10%	
Specific Gravity Bottle		> 100 ml to 5000 ml	0.04%	
		5 ml to 100 ml	0.03%	
Volume Jar & Prover Tanks	GTS-WP-61B Gravimetric method ISO 8655-6 & ISO 4787	>5 L to 20 L	0.02%	

^{*} Calibration and Measurement Capability (CMC) is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards or nearly ideal measuring equipment. Calibration and Measurement Capabilities represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The actual measurement uncertainty of a specific calibration performed by the laboratory may be greater than the CMC due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.